Analytical solution of the generalized Langevin equation with hydrodynamic interactions: subdiffusion of heavy tracers.

نویسندگان

  • Denis S Grebenkov
  • Mahsa Vahabi
چکیده

We consider a generalized Langevin equation that can be used to describe thermal motion of a tracer in a viscoelastic medium by accounting for inertial and hydrodynamic effects at short times, subdiffusive scaling at intermediate times, and eventual optical trapping at long times. We derive a Laplace-type integral representation for the linear response function that governs the diffusive dynamics. This representation is particularly well suited for rapid numerical computation and theoretical analysis. In particular, we deduce explicit formulas for the mean and variance of the time averaged (TA) mean square displacement (MSD) and velocity autocorrelation function (VACF). The asymptotic behavior of the TA MSD and TA VACF is investigated at different time scales. Some biophysical and microrheological applications are discussed, with an emphasis on the statistical analysis of optical tweezers' single-particle tracking experiments in polymer networks and living cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule.

By introducing fractional Gaussian noise into the generalized Langevin equation, the subdiffusion of a particle can be described as a stationary Gaussian process with analytical tractability. This model is capable of explaining the equilibrium fluctuation of the distance between an electron transfer donor and acceptor pair within a protein that spans a broad range of time scales, and is in exce...

متن کامل

Generalized Langevin dynamics of a nanoparticle using a finite element approach: thermostating with correlated noise.

A direct numerical simulation (DNS) procedure is employed to study the thermal motion of a nanoparticle in an incompressible Newtonian stationary fluid medium with the generalized Langevin approach. We consider both the Markovian (white noise) and non-Markovian (Ornstein-Uhlenbeck noise and Mittag-Leffler noise) processes. Initial locations of the particle are at various distances from the boun...

متن کامل

Fractional Fokker-Planck equations for subdiffusion with space- and time-dependent forces.

We derive a fractional Fokker-Planck equation for subdiffusion in a general space- and time-dependent force field from power law waiting time continuous time random walks biased by Boltzmann weights. The governing equation is derived from a generalized master equation and is shown to be equivalent to a subordinated stochastic Langevin equation.

متن کامل

Differential Quadrature Method for the Analysis of Hydrodynamic Thrust Bearings

This paper presents the application of the method of generalized differential quadrature (GDQ) for the analysis of hydrodynamic thrust bearings. GDQ is a simple, efficient, high-order numerical technique and it uses the information on all grid points to approach the derivatives of the unknown function. The effectiveness of the solution technique is verified by comparing the GDQ computed results...

متن کامل

Reproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation

In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 89 1  شماره 

صفحات  -

تاریخ انتشار 2014